Profile generator for time optimal jerk-limited trajectories able to follow moving targets

Philippe Blanc, HEIG-VD

January 9, 2022

1 Nomenclature and problem setup

We denote by $x(t)$ the motion of the axis, and by $x_{c}(t)$ the motion of the target. The index c stands for the conveyor moving at constant velocity v_{c}. The determination of the optimal trajectory is easier to derive in relative motion. The relative position is defined as $x_{r}(t)=x(t)-x_{c}(t)$. The symmetrical constraint $|\dot{x}(t)|<v_{\text {max }}$ becomes asymmetrical $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$. Relative acceleration $\ddot{x}_{r}(t)$ and axis acceleration $\ddot{x}(t)$ are the same, since the conveyor is supposed to move at constant velocity. The following section shows how to compute the time-optimal profile for arbitrary initial conditions $x_{r}(0), \dot{x}_{r}(0), \ddot{x}_{r}(0)$ of the relative motion and arbitrary linear target motion $x_{c}(t)=x_{c 0}+v_{c} t$.

2 Determination of jerk switching points in continuous time

Among all functions ${ }^{1} x_{r}(t)$ satisfying

$$
\begin{gathered}
x_{r}(0)=x_{r 0}, \dot{x}_{r}(0)=v_{r 0}, \ddot{x}_{r}(0)=a_{0} \\
x_{r}(T)=0, \dot{x}_{r}(T)=0, \ddot{x}_{r}(T)=0
\end{gathered}
$$

under the constraints

$$
-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c},\left|\ddot{x}_{r}(t)\right| \leqslant a_{\max } \text { for } t \in[0, T]
$$

and

$$
\left|\dddot{x}_{r}(t)\right| \leqslant j_{\max } \text { for almost all } t \in[0, T]
$$

we are looking for the one for which T is minimal.
The existence of such a function $x_{r}(t)$ satisfying the initial and final conditions implies

$$
v_{r 0}+\frac{a_{0}^{2}}{2 j_{\max }} \leqslant v_{\max } \text { if } a_{0} \geqslant 0
$$

and

$$
v_{r 0}-\frac{a_{0}^{2}}{2 j_{\max }} \geqslant-v_{\max } \text { if } a_{0} \leqslant 0
$$

The general profile of the solution has the following structure

$$
\begin{aligned}
x_{r}(t) & =x_{r 0}+v_{r 0} t+\frac{1}{2} a_{0} t^{2}+\frac{1}{6} c t^{3}-\frac{1}{6} \epsilon\left(t-t_{1}\right) c\left(t-t_{1}\right)^{3}-\frac{1}{6} \epsilon\left(t-t_{2}\right) c\left(t-t_{2}\right)^{3} \\
& +\frac{1}{6} \epsilon\left(t-t_{3}\right) c\left(t-t_{3}\right)^{3}-\frac{1}{6} \epsilon\left(t-t_{4}\right) c\left(t-t_{4}\right)^{3}+\frac{1}{6} \epsilon\left(t-t_{5}\right) c\left(t-t_{5}\right)^{3}+\frac{1}{6} \epsilon\left(t-t_{6}\right) c\left(t-t_{6}\right)^{3}
\end{aligned}
$$

[^0]where $c= \pm \jmath_{\text {max }}, 0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{3} \leqslant t_{4} \leqslant t_{5} \leqslant t_{6} \leqslant T$ and $\epsilon(\cdot)$ denotes the Heaviside step function.

case 1:

If $a_{0} \geqslant 0$ and if $x_{r 0}=\frac{a_{0}^{3}}{6 j_{\max }^{2}}$ and $v_{r 0}=-\frac{a_{0}^{2}}{2 j_{\max }}$ then $x(t)=\frac{\left(a_{0}-j_{\max } t\right)^{3}}{6 j_{\max }^{2}}$ and $T=\frac{a_{0}}{j_{\max }}$.
If $a_{0}<0$ and if $x_{r 0}=\frac{a_{0}^{3}}{6 j_{\max }^{2}}$ and $v_{r 0}=\frac{a_{0}^{2}}{2 j_{\max }}$ then $x(t)=\frac{\left(a_{0}+j_{\max } t\right)^{3}}{6 j_{\max }^{2}}$ and $T=-\frac{a_{0}}{j_{\max }}$.

case 2:

Otherwise we pose $t_{2}=t_{1}, t_{4}=t_{3}, t_{6}=t_{5}$ and we determine $c \in\left\{-j_{\max }, j_{\max }\right\}$ such that the system of equations

$$
\left\{\begin{array}{l}
x_{r}(T)=0 \\
\dot{x}_{r}(T)=0 \\
\ddot{x}_{r}(T)=0
\end{array}\right.
$$

with unknowns t_{1}, t_{5} and T has a solution satisfying $0 \leqslant t_{1} \leqslant t_{5} \leqslant T$.
If $\left|\ddot{x}_{r}\left(t_{1}\right)\right| \leqslant a_{\max }$ and $\left|\ddot{x}_{r}\left(t_{5}\right)\right| \leqslant a_{\max }$ and if $-v_{\max }-v_{c} \leqslant \dot{x}_{c}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile. In case 2 , the acceleration constraints are not active.
case 3:
Otherwise, if $\ddot{x}_{r}\left(t_{5}\right)>a_{\max }$ we necessarily have $c=-j_{\max }$. We pose $t_{2}=t_{1}, t_{4}=t_{3}$ and we compute the solution of the following system of equations

$$
\left\{\begin{array}{lll}
\ddot{x}_{r}\left(t_{5}\right) & = & a_{\max } \\
x_{r}(T) & =0 \\
\dot{x}_{r}(T) & =0 \\
\ddot{x}_{r}(T) & =0
\end{array}\right.
$$

with unknowns t_{1}, t_{5}, t_{6} and T satisfying $0 \leqslant t_{1} \leqslant t_{5} \leqslant t_{6} \leqslant T$.
If $\ddot{x}_{r}\left(t_{1}\right) \geqslant-a_{\max }$ and if $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile.

case 4 :

Otherwise, if $\ddot{x}_{r}\left(t_{1}\right)<-a_{\max }$ we pose $t_{4}=t_{3}$ and we compute the solution of the following system of equations

$$
\left\{\begin{array}{ccc}
\ddot{x}_{r}\left(t_{1}\right) & = & -a_{\max } \\
\ddot{x}_{r}\left(t_{5}\right) & = & a_{\max } \\
x_{r}(T)_{r} & = & 0 \\
\dot{x}_{r}(T) & = & 0 \\
\ddot{x}_{r}(T) & = & 0
\end{array}\right.
$$

with unknowns $t_{1}, t_{2}, t_{5}, t_{6}$ and T satisfying $0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{5} \leqslant t_{6} \leqslant T$. If $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile.

case 5:

Otherwise, if $\ddot{x}_{r}\left(t_{5}\right)<-a_{\max }$ we necessarily have $c=j_{\max }$. We pose $t_{2}=t_{1}, t_{4}=t_{3}$ and we compute the solution of the following system of equations

$$
\left\{\begin{array}{llc}
\ddot{x}_{r}\left(t_{5}\right) & = & -a_{\max } \\
x_{r}(T) & = & 0 \\
\dot{x}_{r}(T) & = & 0 \\
\ddot{x}_{r}(T) & = & 0
\end{array}\right.
$$

with unknowns t_{1}, t_{5}, t_{6} and T satisfying $0 \leqslant t_{1} \leqslant t_{5} \leqslant t_{6} \leqslant T$.
If $\ddot{x}_{r}\left(t_{1}\right) \leqslant a_{\text {max }}$ and if $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile.
case 6:

Otherwise, if $\ddot{x}_{r}\left(t_{1}\right)>a_{\max }$ we pose $t_{4}=t_{3}$ and we compute for $c=j_{\max }$ the solution of the following system of equations

$$
\left\{\begin{array}{llc}
\ddot{x}_{r}\left(t_{1}\right) & = & a_{\max } \\
\ddot{x}_{r}\left(t_{5}\right) & = & -a_{\max } \\
x_{r}(T) & = & 0 \\
\dot{x}_{r}(T) & = & 0 \\
\ddot{x}_{r}(T) & = & 0
\end{array}\right.
$$

with unknowns $t_{1}, t_{2}, t_{5}, t_{6}$ and T satisfying $0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{5} \leqslant t_{6} \leqslant T$.
If $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile. Case 6 is identical to case 4 except for a change of sign in c and $a_{\text {max }}$.

case 7:

Otherwise, if $\left|\ddot{x}_{r}\left(t_{5}\right)\right| \leqslant a_{\max }$ and $\ddot{x}_{r}\left(t_{1}\right)<-a_{\max }$ we necessarily have $c=-j_{\max }$. We pose $t_{6}=t_{5}$

$$
\left\{\begin{array}{llc}
\ddot{x}_{r}\left(t_{1}\right) & = & -a_{\max } \\
x_{r}(T) & = & 0 \\
\dot{x}_{r}(T) & = & 0 \\
\ddot{x}_{r}(T) & = & 0
\end{array}\right.
$$

with unknowns t_{1}, t_{2}, t_{5} and T satisfying $0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{5} \leqslant T$. If $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile.

case 8:

Otherwise, if $\left|\ddot{x}_{r}\left(t_{5}\right)\right| \leqslant a_{\max }$ and $\ddot{x}_{r}\left(t_{1}\right)>a_{\max }$ we necessarily have $c=j_{\max }$. We pose $t_{6}=t_{5}$ and we compute the solution of the following system of equations

$$
\left\{\begin{array}{l}
\ddot{x}_{r}\left(t_{1}\right)=a_{\max } \\
x_{r}(T)=0 \\
\dot{x}_{r}(T)=0 \\
\ddot{x}_{r}(T)=0
\end{array}\right.
$$

with unknowns t_{1}, t_{2}, t_{5} and T satisfying $0 \leqslant t_{1} \leqslant t_{2} \leqslant t_{5} \leqslant T$.
If $-v_{\max }-v_{c} \leqslant \dot{x}_{r}(t) \leqslant v_{\max }-v_{c}$ for $t \in[0, T]$ we constructed the wanted profile. Case 8 is identical to case 7 except for a change of sign in c and $a_{\text {max }}$.

cases where $v_{\text {max }}$ is active:

Otherwise, if there exist $\bar{t} \in[0, T]$ such that $\dot{x}_{r}(\bar{t})>v_{\text {max }}-v_{c}$ or such that $\dot{x}_{r}(\bar{t})<-v_{\max }-v_{c}$ we restart the algorithm by completing the system of equations with the following equations

$$
\left\{\begin{array}{llc}
\ddot{x}_{r}\left(t_{3}\right) & = & 0 \\
\dot{x}_{r}\left(t_{3}\right) & = & v_{\max }-v_{c}
\end{array}\right.
$$

or

$$
\left\{\begin{array}{llc}
\ddot{x}_{r}\left(t_{3}\right) & = & 0 \\
\dot{x}_{r}\left(t_{3}\right) & = & -v_{\max }-v_{c}
\end{array}\right.
$$

Potentially admissible solutions for case 2 are given by

$$
t_{1}=\frac{2\left(a_{0}^{2}-2 c v_{r 0}\right)-4 a_{0} c \tau+c^{2} \tau^{2}}{4 c^{2} \tau}, t_{5}=t_{1}+\frac{\tau}{2}, T=-\frac{a_{0}}{c}+\tau
$$

where $\tau>0$ satisfies the relation

$$
3 c^{4} \tau^{4}-24 c^{2}\left(a_{0}^{2}-2 c v_{r 0}\right) \tau^{2}+32 c\left(a_{0}^{3}-3 a_{0} c v_{r 0}+3 c^{2} x_{r 0}\right) \tau-12\left(a_{0}^{2}-2 c v_{r 0}\right)^{2}=0
$$

If the velocity constraint is active, the computation of the solution only needs solving polynomials of degree at most 2.

[^0]: ${ }^{1}$ two times continuously derivable on the interval $[0, T]$ and whose third derivative is essentially bounded in the sense of distributions

