Profile generator for time optimal jerk–limited trajectories able to follow moving targets

Philippe Blanc, HEIG-VD

January 9, 2022

1 Nomenclature and problem setup

We denote by x(t) the motion of the axis, and by $x_c(t)$ the motion of the target. The index c stands for the conveyor moving at constant velocity v_c . The determination of the optimal trajectory is easier to derive in relative motion. The relative position is defined as $x_r(t) = x(t) - x_c(t)$. The symmetrical constraint $|\dot{x}(t)| < v_{\text{max}}$ becomes asymmetrical $-v_{\text{max}} - v_c \leq \dot{x}_r(t) \leq v_{\text{max}} - v_c$. Relative acceleration $\ddot{x}_r(t)$ and axis acceleration $\ddot{x}(t)$ are the same, since the conveyor is supposed to move at constant velocity. The following section shows how to compute the time-optimal profile for arbitrary initial conditions $x_r(0), \dot{x}_r(0), \ddot{x}_r(0)$ of the relative motion and arbitrary linear target motion $x_c(t) = x_{c0} + v_c t$.

2 Determination of jerk switching points in continuous time

Among all functions¹ $x_r(t)$ satisfying

$$x_r(0) = x_{r0}, \, \dot{x}_r(0) = v_{r0}, \, \ddot{x}_r(0) = a_0$$
$$x_r(T) = 0, \, \dot{x}_r(T) = 0, \, \ddot{x}_r(T) = 0$$

under the constraints

$$-v_{\max} - v_c \leqslant \dot{x}_r(t) \leqslant v_{\max} - v_c, \ |\ddot{x}_r(t)| \leqslant a_{\max} \ \text{for} \ t \in [0, T]$$

and

$$|\ddot{x}_r(t)| \leq j_{\max}$$
 for almost all $t \in [0, T]$

we are looking for the one for which T is minimal. The existence of such a function $x_r(t)$ satisfying the initial and final conditions implies

$$v_{r0} + \frac{a_0^2}{2j_{\max}} \leqslant v_{\max}$$
 if $a_0 \ge 0$

and

$$v_{r0} - \frac{a_0^2}{2j_{\max}} \ge -v_{\max}$$
 if $a_0 \leqslant 0$

The general profile of the solution has the following structure

$$\begin{aligned} x_r(t) &= x_{r0} + v_{r0}t + \frac{1}{2}a_0t^2 + \frac{1}{6}ct^3 - \frac{1}{6}\epsilon(t-t_1)c(t-t_1)^3 - \frac{1}{6}\epsilon(t-t_2)c(t-t_2)^3 \\ &+ \frac{1}{6}\epsilon(t-t_3)c(t-t_3)^3 - \frac{1}{6}\epsilon(t-t_4)c(t-t_4)^3 + \frac{1}{6}\epsilon(t-t_5)c(t-t_5)^3 + \frac{1}{6}\epsilon(t-t_6)c(t-t_6)^3 \end{aligned}$$

¹ two times continuously derivable on the interval [0, T] and whose third derivative is essentially bounded in the sense of distributions

where $c = \pm j_{\text{max}}$, $0 \leq t_1 \leq t_2 \leq t_3 \leq t_4 \leq t_5 \leq t_6 \leq T$ and $\epsilon(\cdot)$ denotes the Heaviside step function.

case 1:

If
$$a_0 \ge 0$$
 and if $x_{r0} = \frac{a_0^3}{6j_{\max}^2}$ and $v_{r0} = -\frac{a_0^2}{2j_{\max}}$ then $x(t) = \frac{(a_0 - j_{\max}t)^3}{6j_{\max}^2}$ and $T = \frac{a_0}{j_{\max}}$.
If $a_0 < 0$ and if $x_{r0} = \frac{a_0^3}{6j_{\max}^2}$ and $v_{r0} = \frac{a_0^2}{2j_{\max}}$ then $x(t) = \frac{(a_0 + j_{\max}t)^3}{6j_{\max}^2}$ and $T = -\frac{a_0}{j_{\max}}$.

case 2:

Otherwise we pose $t_2 = t_1$, $t_4 = t_3$, $t_6 = t_5$ and we determine $c \in \{-j_{\text{max}}, j_{\text{max}}\}$ such that the system of equations

$$\begin{cases} x_r(T) = 0\\ \dot{x}_r(T) = 0\\ \ddot{x}_r(T) = 0 \end{cases}$$

with unknowns t_1, t_5 and T has a solution satisfying $0 \leq t_1 \leq t_5 \leq T$.

If $|\ddot{x}_r(t_1)| \leq a_{\max}$ and $|\ddot{x}_r(t_5)| \leq a_{\max}$ and if $-v_{\max} - v_c \leq \dot{x}_c(t) \leq v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile. In case 2, the acceleration constraints are not active.

case 3:

Otherwise, if $\ddot{x}_r(t_5) > a_{\text{max}}$ we necessarily have $c = -j_{\text{max}}$. We pose $t_2 = t_1$, $t_4 = t_3$ and we compute the solution of the following system of equations

$$\begin{cases} \ddot{x}_{r}(t_{5}) = a_{\max} \\ x_{r}(T) = 0 \\ \dot{x}_{r}(T) = 0 \\ \ddot{x}_{r}(T) = 0 \end{cases}$$

with unknowns t_1, t_5, t_6 and T satisfying $0 \leq t_1 \leq t_5 \leq t_6 \leq T$. If $\ddot{x}_r(t_1) \ge -a_{\max}$ and if $-v_{\max} - v_c \le \dot{x}_r(t) \le v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile.

case 4:

Otherwise, if $\ddot{x}_r(t_1) < -a_{\text{max}}$ we pose $t_4 = t_3$ and we compute the solution of the following system of equations

$$\begin{cases} \ddot{x}_{r}(t_{1}) = -a_{\max} \\ \ddot{x}_{r}(t_{5}) = a_{\max} \\ x_{r}(T)_{r} = 0 \\ \dot{x}_{r}(T) = 0 \\ \ddot{x}_{r}(T) = 0 \end{cases}$$

with unknowns t_1 , t_2 , t_5 , t_6 and T satisfying $0 \leq t_1 \leq t_2 \leq t_5 \leq t_6 \leq T$. If $-v_{\max} - v_c \leq \dot{x}_r(t) \leq v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile.

case 5:

Otherwise, if $\ddot{x}_r(t_5) < -a_{\text{max}}$ we necessarily have $c = j_{\text{max}}$. We pose $t_2 = t_1$, $t_4 = t_3$ and we compute the solution of the following system of equations

$$\begin{cases} \ddot{x}_{r}(t_{5}) = -a_{\max} \\ x_{r}(T) = 0 \\ \dot{x}_{r}(T) = 0 \\ \ddot{x}_{r}(T) = 0 \\ \ddot{x}_{r}(T) = 0 \end{cases}$$

with unknowns t_1, t_5, t_6 and T satisfying $0 \leq t_1 \leq t_5 \leq t_6 \leq T$. If $\ddot{x}_r(t_1) \leq a_{\max}$ and if $-v_{\max} - v_c \leq \dot{x}_r(t) \leq v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile.

case 6:

Otherwise, if $\ddot{x}_r(t_1) > a_{\text{max}}$ we pose $t_4 = t_3$ and we compute for $c = j_{\text{max}}$ the solution of the following system of equations

$$egin{array}{rcl} \ddot{x}_{r}(t_{1}) &=& a_{\max} \ \ddot{x}_{r}(t_{5}) &=& -a_{\max} \ x_{r}(T) &=& 0 \ \dot{x}_{r}(T) &=& 0 \ \dot{x}_{r}(T) &=& 0 \ \dot{x}_{r}(T) &=& 0 \end{array}$$

with unknowns t_1 , t_2 , t_5 , t_6 and T satisfying $0 \le t_1 \le t_2 \le t_5 \le t_6 \le T$.

If $-v_{\max} - v_c \leq \dot{x}_r(t) \leq v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile. Case 6 is identical to case 4 except for a change of sign in c and a_{\max} .

case 7:

Otherwise, if $|\ddot{x}_r(t_5)| \leq a_{\text{max}}$ and $\ddot{x}_r(t_1) < -a_{\text{max}}$ we necessarily have $c = -j_{\text{max}}$. We pose $t_6 = t_5$

ſ	$\ddot{x}_r(t_1)$	=	$-a_{\max}$
ł	$x_r(T)$	=	0
	$\dot{x}_r(T)$	=	0
	$\ddot{x}_r(T)$	=	0

with unknowns t_1, t_2, t_5 and T satisfying $0 \leq t_1 \leq t_2 \leq t_5 \leq T$. If $-v_{\max} - v_c \leq \dot{x}_r(t) \leq v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile.

case 8:

Otherwise, if $|\ddot{x}_r(t_5)| \leq a_{\max}$ and $\ddot{x}_r(t_1) > a_{\max}$ we necessarily have $c = j_{\max}$. We pose $t_6 = t_5$ and we compute the solution of the following system of equations

$$\begin{cases} \ddot{x}_{r}(t_{1}) &= a_{\max} \\ x_{r}(T) &= 0 \\ \dot{x}_{r}(T) &= 0 \\ \ddot{x}_{r}(T) &= 0 \end{cases}$$

with unknowns t_1 , t_2 , t_5 and T satisfying $0 \le t_1 \le t_2 \le t_5 \le T$. If $-v_{\max} - v_c \le \dot{x}_r(t) \le v_{\max} - v_c$ for $t \in [0, T]$ we constructed the wanted profile. Case 8 is identical to case 7 except for a change of sign in c and a_{\max} .

cases where v_{\max} is active:

Otherwise, if there exist $\bar{t} \in [0, T]$ such that $\dot{x}_r(\bar{t}) > v_{\max} - v_c$ or such that $\dot{x}_r(\bar{t}) < -v_{\max} - v_c$ we restart the algorithm by completing the system of equations with the following equations

$$\begin{cases} \ddot{x}_{r}(t_{3}) = 0 \\ \dot{x}_{r}(t_{3}) = v_{\max} - v_{c} \end{cases}$$
$$\begin{cases} \ddot{x}_{r}(t_{3}) = 0 \\ \dot{x}_{r}(t_{3}) = -v_{\max} - v_{c} \end{cases}$$

or

Potentially admissible solutions for case 2 are given by

$$t_1 = \frac{2(a_0^2 - 2cv_{r0}) - 4a_0c\tau + c^2\tau^2}{4c^2\tau}, t_5 = t_1 + \frac{\tau}{2}, T = -\frac{a_0}{c} + \tau$$

where $\tau > 0$ satisfies the relation

$$3c^{4}\tau^{4} - 24c^{2}(a_{0}^{2} - 2cv_{r0})\tau^{2} + 32c(a_{0}^{3} - 3a_{0}cv_{r0} + 3c^{2}x_{r0})\tau - 12(a_{0}^{2} - 2cv_{r0})^{2} = 0$$

If the velocity constraint is active, the computation of the solution only needs solving polynomials of degree at most 2.