Since $u(0)=0, \dot{u}(0)=0$ and $\ddot{u}(0)=0$ we have $q(0)=0$ et $q^{\prime}(0)=0$.
Thus, if q is a degree n polynomial, then $q(u)=u^{2} p(u)$ where p is a degree $n-2$ polynomial, and $\sqrt{q(u)}$ is lipschitz in the neighborhood of 0 .
From this it follows that the initial value problem associated to finding $u(t)$

$$
\left\{\begin{array}{l}
\dot{u}(t)=\sqrt{q(u(t))} \text { for } t \geq 0 \\
u(0)=0
\end{array}\right.
$$

has a unique solution, being of course the solution $u(t)=0$, i.e. the motion gets stuck at standstill.
Furthermore, $q^{\prime \prime}(u(t)) \dot{u}(t)=2 \dddot{u}(t)$ and hence, if $\dddot{u}(0)>0$, then $\lim _{u \rightarrow 0_{+}} q^{\prime \prime}(u)=$ ∞ and the function q cannot be well approximated by a polynomial!
Indeed, the time-optimal solution right at the beginning of the trajectory starting from standstill must feature a maximum jerk phase. If $u=\frac{1}{6} j_{p s} t^{3}$ then $t=\left(\frac{6 u}{j_{p s}}\right)^{\frac{1}{3}}$ and $q(u)=\frac{3}{2} 6^{\frac{1}{3}} j_{p s}^{\frac{2}{3}} u^{\frac{4}{3}}$. Note the fractional power in the expression of $q(u)$.
The above explanations motivate our approach used at standstill.

