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Abstract

Multi-axis tool paths are currently generated as a set of discrete data points consisting of a position vector, representing the tool tip, and an

orientation unit vector, representing the tool axis. The CNC interpolator must convert these points into continuous machine tool axis motions.

To achieve the highest quality parts, a constant feed and reduced angular acceleration must be maintained throughout the motion. This paper

presents a new algorithm for off-line interpolation of the data points, followed by real-time axis command generation. The splines produced

by the algorithm are C2 continuous, and independent of machine tool kinematics. Hence the motions produced will be the same on any ®ve-

axis machine tool, hexapod, or robotic arm. Three splines are computed: position, orientation, and reparameterization. The position spline is a

near arc-length parameterized quintic polynomial spline. The paper introduces a near arc-length parameterized quintic spherical BeÂzier

spline as the orientation spline. Coordinated motion is accomplished with an orientation reparameterization spline. The proposed algorithm is

demonstrated using a practical example. q 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The majority of milling operations employ three-axis

CNC machine tools. These machines have the virtue of a

direct correspondence between the part centric CL-DATA

tool path coordinates and the machine tool axis motions.

Multi (four and ®ve)-axis motions, however, can only be

related to the CL-DATA coordinates by solving a set of

machine speci®c kinematic equations. To use a different

machine tool con®guration, appropriate parameters must

be determined, and the axes motions must again be off-

line calculated using a commercial post processor such as

IntelliPost [19]. This complication has impeded the intro-

duction of multi-axis machines for many manufacturing

operations, despite advantages such as increased metal

removal rate, the improved repeatability of one setup, and

improved surface ®nish [9].

Recent research on interpolators for three-axis machines

has demonstrated that reduced cutting time, better accuracy,

and improved surface ®nish can be achieved through the

application of parametric splines. In this paper, algorithms

are developed that extend the bene®ts of parametric spline

interpolation to multi-axis machining.

In Section 2, interpolation, as it has been applied to

three-axis tool paths, is reviewed. This is followed by a

discussion of multi-axis interpolation. In Section 3, the

proposed multi-axis interpolation algorithm is presented.

A practical example of the proposed algorithm is provided

in Section 4.

2. Previous work

Machining of mechanical parts requires generation of

tool paths de®ning the motion of the tool with respect to

the part [7]. Three-axis tool paths are represented by a set of

Cartesian position vectors. Each vector describes the loca-

tion of the tool with respect to the part. Feedrate information

is also provided. Multi-axis tool paths also specify the

orientation of the tool. Since the tool rotates about the

spindle during cutting, only the remaining two orientation

degrees of freedom are necessary. A ®ve-degree of free-

dom tool path is therefore suf®cient to specify the position

and orientation.

In general, a multi-axis tool path is represented by a set of

Computer-Aided Design 33 (2001) 1±15

COMPUTER-AIDED
DESIGN

0010-4485/00/$ - see front matter q 2000 Elsevier Science Ltd. All rights reserved.

PII: S0010-4485(00)00049-X

www.elsevier.com/locate/cad

* Corresponding author. Tel.: 1 1-905-525-9140, ext. 27130; fax: 1 1-

905-572-7944.

E-mail address: adspence@mcmaster.ca (A.D. Spence).



tool path vectors, t

t � � p q� T
; p � � px py pz�T; q � � qx qy qz � T

; uqu

� 1 (1)

The tool tip position vector p is represented in Cartesian

coordinates. The orientation of the tool axis is represented

by a unit vector q (Fig. 1).

The challenge in converting tool paths into axis motions

is to command the machine tool axes to move at the speci-

®ed feedrate. Because it is impractical to specify the axis

positions at the motion controller loop closing frequency

(approximately 1 kHz), interpolatory splines are used.

Maintaining a near constant feedrate minimizes cutting

force variation, avoids chatter, and produces a smoother

surface ®nish.

For multi-axis tool paths the angular velocity of the tool

must also be taken into account since the effective feedrate

along the tool-axis will vary with the angular velocity.
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Nomenclature

A;C;X;Y ;Z Five-axis CNC machine tool joint coordinates

a, b, c Scalars used in calculation of reparameterization spline

B Spherical BeÂzier vector function

c Position spline vector polynomial coef®cient

d Orientation spline vector control point

dx; dy; dz Workpiece offset coordinates

e, i Spline segment index

f, g, h Vectors used in calculation of the spherical BeÂzier spline second derivatives

f Feedrate (mm/s)

h First derivative of reparameterization spline

j Curve degree

k Spherical BeÂzier curve control point index

l Range of position spline segment

m Sample

n Number of segments in a spline

P Position spline vector function

p � � px py pz �T Tool tip position vector and scalar components (mm)

Q Orientation spline vector function

q � � qx qy qz �T Tool axis orientation unit vector and scalar components

S Spherical interpolation vector function

s Arc-length parameter

T Servo update period (s)

t Tool path displacement vector

t Time (s)

u Position spline parameter

V Reparameterization spline function

v Orientation spline parameter

w Iteration index

l Range of orientation spline parameter

m Orientation spline knot

u Angle between two unit vectors

y

z

x

p

q Tool

Fig. 1. The tool tip position vector, p, and the tool axis orientation vector, q.



Commercial CAD/CAM systems and post processors ®rst

perform the inverse kinematics algorithm on the tool path

points, and then discretize the transformed tool path into a

series of short linear segments. The linear segments are

discretized into real-time axis positions by the machine

tool controller. Previous researchers, Koren and Lo [10],

and Yang and Kong [24], have demonstrated the following

limitations of linear interpolators:

² The velocity discontinuities at the linear segment junc-

tions lead to higher accelerations, poor surface ®nish,

lower surface accuracy and longer machining times.

² Generally, the linear segment length cannot be evenly

subdivided by the position loop update period. As a

result, the distance between the last two points will be

shorter than the rest, resulting in undesirable accelera-

tions and longer machining times.

Fitting parametric splines to meet the geometric

requirement of interpolating the tool path points is a

straightforward task. Most researchers have used polyno-

mial splines of n segments and degree j which vary with

the parameter, u

p � Pi�u� � c1i
1 c2i

u 1 ¼ 1 c� j11�i u
j
; i � 1;¼; n

�2�

The dif®culty has been in obtaining the desired feedrate

along the spline. Two approaches have evolved to solve

this problem. The ®rst method, developed by Shpitalni

[18], is to discretize the spline in real-time by estimating

the next point along the spline at a constant feedrate, f,

using a truncated Taylor series expansion

um � um21 1
f T��������������������������������������������

dpx

du

� �2

m21
1

dpy

du

� �2

m21
1

dpz

du

� �2

m21

s �3�

where T is the sampling period. The second notion, devel-

oped by Renner [15] and improved successively by Wang

and Yang [23], and Wang and Wright [22], is to introduce

splines with the property of near unit tangency or near

arc-length parameterization. With this property, the next

point along such a spline is obtained with

um � um21 1 f T �4�

To reduce accelerations due to geometry the splines are

constructed to be at least C2 continuous.

Parametric splines reduce or eliminate the two drawbacks

of linear interpolation: velocity discontinuity between

segments and end of segment accelerations. As a conse-

quence, the machining times are reduced while improving

part surface ®nish and accuracy.

There is little work on interpolators for multi-axis

machining. Lin and Koren [12] applied the Taylor series

approximation technique to the ruled surface subset of
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tool paths. A signi®cant contribution in the work, however,

is a new architecture for multi-axis interpolation (Fig. 2).

Unlike common practice, discretization of the tool path is

performed ®rst, in part coordinates, and then inverse kine-

matics is performed in real-time. This distinction avoids the

need to repeat the interpolation step if there is a change in the

location or orientation of the part, or a change in tool length.

A more general approach would be to interpolate the tool

path position and orientation vectors, regardless of the

surface type. The primary obstacle is the interpolation of

the orientation unit vectors, while ensuring that the entire

interpolated spline remains on the surface of the unit sphere.

A method of interpolating the orientation as well as the

position has been suggested by Ge and Srinivasan [5,20]

and JuÈttler [8]. Their work is based on the notion that tool

path vectors are transformed into image space where a

spline is interpolated through all coordinates of the trans-

formed vector simultaneously. The spline may then be

sampled in the real-time controller of the machine tool

using the Taylor series approximation described above.

This method ensures an acceptable constant feed. However,

the angular velocity and therefore the effective feedrate will

be uncontrolled because Eq. (3) does not account for the

parameterization of the tool orientation. This effect is great-

est where there is a small feed relative to the angular velo-

city. The algorithm developed in this paper overcomes this

shortcoming.

3. Proposed algorithm

The proposed multi-axis interpolation algorithm aims to

extend the three-axis near arc-length parameterized quin-

tic spline algorithm by Wang and Yang [23] to multi-axis

machining. In particular, the interpolated tool path will be

C2 continuous with a near constant feed and an angular

velocity with reduced angular acceleration. This scheme

is arranged in the manner suggested by Lin and Koren

[12], in which part coordinate tool path interpolation

is performed off-line, and sampling and inverse kine-

matics are performed in real-time on the machine tool

controller.

The interpolation algorithm is divided into three stages.

In the ®rst stage, a near arc-length parameterized quintic

polynomial spline is interpolated through the position

vectors. In the second stage, a near arc-length parameterized

quintic spherical BeÂzier spline is interpolated through the

orientation unit vectors. The resultant spline lies on the unit

sphere. If this spline were sampled in real-time a near

constant angular velocity would result. To synchronize the

position and orientation splines a reparameterization spline

is constructed during the third stage. This spline reparame-

terizes the orientation spline, but with reduced deviation

from a constant angular velocity. Details of the algo-

rithm follow.

3.1. Position spline

The ®rst stage in interpolating a tool path is calculation of

the near arc-length quintic polynomial position spline

through the set of position vectors, p1;¼;pn11: The ith

segment of the position spline is expressed in the form

Pi�u� � c1i
1 c2i

u 1 c3i
u2 1 c4i

u3 1 c5i
u4 1 c6i

u5
;

u [ �0; li�
�5�

where u is the position parameter, and li is the range of u.

Determination of the quintic coef®cients, c1i
;¼; c6i

; in

Eq. (5) is based on the technique described in Ref. [23],

but with an improvement. In their work, Wang and Yang

®rst estimate li with

li � upi 2 pi11u �6�
and then interpolate a C2 cubic polynomial spline with

natural parameterization through the data points with
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The ®rst and second derivatives of the cubic spline at the

data points are extracted and used to construct a quintic near

arc-length parameterized spline. In doing so, the ®rst deri-

vative is normalized in order that the quintic spline is arc-

length parameterized at the data points. However, the

second derivative is not modi®ed and is applied directly to

the quintic spline. The coef®cients of the quintic spline are

then calculated from the normalized cubic spline ®rst and

second derivatives, using the equations

c1i
� pi; c2i

� p 0i; c3i
� p 00i

2
;

c4i
� 10�pi11 2 pi�

l3
i

2
2�2p 0i11 1 3p 0i�

l2i
1

p 00i11 2 3p 00i
2li

;

c5i
� 2

15�pi11 2 pi�
l4i

1
7p 0i11 1 8p 0i

l3i
2

2p 00i11 2 3p 00i
2l2i

;

c6i
� 6�pi11 2 pi�

l5
i

2
3�p 0i11 1 p 0i�

l4
i

2
p 00i11 2 p 00i

2l3
i

(8)

Finally, the li are recalculated, with the condition

d

du
Pi

li

2

� ����� ���� � 1 �9�

The improvement is made by ®nding the curvature of the

cubic spline at the data points and applying these values in

the construction of the quintic spline. This yields a spline

that is signi®cantly closer to arc-length parameterization.

The improved algorithm is summarized in Fig. 3.

The curvature is found by taking the derivative of the

tangent of a general curve. If P�u� is the general curve, its

tangent is

d

ds
P�u� � dp

ds
� dp

du

du

ds
�10�

By ®nding the length of the tangent vector dp=ds in Eq. (10)

and noting that the length of the tangent vector must be unity

the following result is obtained:

du

ds
� 1

dp

du

���� ���� �11�

Combining Eq. (10) and Eq. (11) results in the well-known

equation for calculating the tangent:

d

ds
P�u� � dp

ds
�

dp

du
dp

du

���� ���� : �12�

The curvature is obtained by differentiating Eq. (12). This

yields

d2

ds2
P�u� � d2p

ds2
�

d2p

du2

du

ds
dp

du

���� ���� 2

dp

du

d2p

du2

 !
du

ds

dp

du

dp

du

���� ����3 : �13�

Combining Eq. (13) with Eqs. (11) and (12) results in a

relation for curvature depending only on the ®rst and second

derivative of the general curve.

d2p

ds2
�

dp

du
´
dp

du

� �
d2p

du2
2

dp

du
´
d2p

du2

 !
dp

du

dp

du
´
dp

du

� �2
�14�

Wright et al. [17,21,22] also made an improvement to the
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arc-length parameterization of the quintic spline by enfor-

cing C3 continuity at the junctions of the spline. Their

results are compared to the above-proposed method in

Fig. 4. The example shown is for a portion of the tool

path shown in Fig. 5. The parameterization error is calcu-

lated as u1 2 udp=dui £ 100%: In Fig. 4 the average parame-

terization error for the C3 continuous spline is 0.0091% and

the average error for the improved C2 continuous spline is

0.0048%, or approximately half as large.

3.2. Orientation spline

The orientation spline interpolates the orientation portion

of the tool path vectors. Since the orientation of the tool is

de®ned by a unit vector, the orientation spline must lie on

the surface of the unit sphere. Construction of a near arc-

length parameterized orientation spline is discussed in two

parts below. First the spherical BeÂzier spline, which lies on a

unit sphere, is introduced. Interpolating a set of unit vectors

with a near arc-length parameterized spherical BeÂzier spline

is then discussed.

3.2.1. Spherical BeÂzier spline

To construct a curve which lies on the unit sphere using

the de Casteljau form of the BeÂzier curve [2,13], we replace

the linear interpolation with a spherical interpolation. The

spherical interpolation curve, S(v), interpolates the two unit

vectors, q1 and q2 as follows [3]:

S�v� � q1 sin�u�1 2 v��1 q2 sin�uv�
sin�u� ;

u � arccos�q1´q2�; uq1u � uq2u � 1:

�15�

It can be shown that

uS�v�u � 1; v [ �0; 1� �16�
and

S�0� � q1; S�1� � q2 �17�
Given j 1 1 control points dk, a spherical BeÂzier curve,

B
j
k�v�; of degree j is given by

B
j
k�v� �

dk; if j � 0

B
j21
k �v� sin�u�1 2 v��1 B

j21
k11�v� sin�uv�

sin�u� ; if j . 0;

8><>:
udk u � 1; u � arccos�B j21

k �v�´B j21
k11�v��:

�18�
The ith segment of a spherical BeÂzier spline is given by

Q
j
i �v� � B

j
1i

v

li

� �
; v [ �0;li�; i � 1;¼; n �19�

where v is the orientation parameter, and li is the range of v.

This equation is the orientation analogue of the position

spline, Eq. (5). It has six unknown vectors d1i
;¼; d6i

and

an segment length li: Similar to the BeÂzier curve in Eucli-

dean space, the spherical BeÂzier spline has the following

properties:

1. Eq. (17) ensures endpoints of a segment (at v � 0 and

v � l) correspond to the ®rst and last control point, d1

and d j11; respectively.

2. The ®rst derivatives at the endpoints of a segment depend

on only the nearest two control points, d1 and d2 at v � 0;

and dj and dj11 at v � l: To ensure C1 continuity at the

junctions, the four local control points dji
; d� j11�i � d1i11

and d2i11
must lie on a great circle of the unit sphere.

3. Similarly, the second derivatives at the endpoints of

a segment depend only on the nearest three control

points.

Equations for determining the ®rst and second derivatives at

the endpoints are given in Appendix A.

3.2.2. Interpolating the orientation spline

The object of the orientation spline is to interpolate the

set of n 1 1 orientation vectors, q1;¼; qn11; with a quintic

�j � 5� spherical BeÂzier spline of Eq. (19). As previously
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discussed, the interpolated spline must have both the

near arc-length parameterization property and C 2 conti-

nuity. The same algorithm used for the position spline

is applied to the orientation spline, with adjustment for

the curve type.

The algorithm for computing the orientation spline

is summarized in Fig. 6. It combines two distinct proce-

dures. The ®rst is the ®tting of a C2 quintic spline. The

second is the improvement of the parameterization of the

spline such that the parameterization approaches arc-length

parameterization.

3.2.3. Fitting the quintic spline

Fitting the C2 quintic spline involves two steps: comput-

ing a C2 cubic spline and then using information from the

cubic spline to construct the quintic spline.

The cubic spline is computed by solving the set of non-

linear equations

Q
j
i �0� � qi; i � 1;¼; n �20�

Q
j
i �li� � qi11; i � 1;¼; n �21�

d

dv
Q

j
i �li� � d

dv
Q

j
i11�0�; i � 1;¼; n 2 1 �22�

d2

dv2
Q

j
i �lc� � d2

dv2
Q

j
i11�0�; i � 1;¼; n 2 1 �23�

for the unknown control points d2i
and d3i

: The control

points d1i
and d4i

correspond to the data points qi and are

therefore known. Broyden's method [14] has been success-

fully used to solve this set of equations, but it requires the

®rst derivatives at the ends of the spline and initial estimates

of the control points. If estimates of the tangents, q 0i; can be

obtained ®rst then the control points can be determined from

Eqs. (A3) and (A4).

Estimates for these ®rst derivatives are obtained by inter-

polating successive sets of three data points with a quadratic

spherical BeÂzier curve. The quadratic BeÂzier curve has three

control points. The ®rst and third control point corresponds

to the ®rst and third data point. The middle control point is

computed using Broyden's method with the middle data

point as the initial estimate. After each iteration of this

method the middle control point is normalized to a unit

vector. From these quadratic curves the tangents necessary

to compute the cubic spline are extracted.

Once a cubic spline has been ®tted, the ®rst and second

derivatives of the cubic spline at the data points are

extracted. These are used to compute the tangents and

curvatures in the same way as for the position spline using

Eqs. (12) and (14). Using the tangents and curvatures from

the cubic spline the unknown quintic control points, d2i
; d3i

;

d4i
; and d5i

; are found (see Appendix A).

3.2.4. Parameterization improvement

An initial estimate of li is obtained in a similar manner to

the chord length for position splines

li � arccos�qi´qi11� �24�
This equation computes the geodesic distance on a unit

sphere between the two unit vectors qi and qi11:

The ®rst improvement to the parameterization is made in

the selection of the tangents and curvatures of the quintic

spline by modifying ®rst and second derivatives extracted

from the cubic spline using Eq. (12) and Eq. (14).

The second improvement to the parameterization is made

once the quintic spline control points are known. By forcing

the unit tangency property at the middle of each segment,
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the segment lengths are obtained and parameterization of

the spline is improved:

d

dv
Q5

i

li

2

� ����� ���� � 1 �25�

This equation can be solved ef®ciently for li with Brent's

method [14].

However, the quintic control points depend on li: Once li

is recomputed with Eq. (25) the control points are no longer

valid and Eqs. (22) and (23) are violated. Therefore it is

necessary to iterate through these two steps until the change

in li is less than a speci®ed threshold value.

Similarly, the cubic and quintic splines are re®tted untilP
i li changes by less than a speci®ed threshold.

3.3. Orientation reparameterization spline

The orientation reparameterization spline ensures coordi-

nated motion by the position and orientation splines. In

three-axis machining, near arc-length parameterized splines

are used to achieve constant feedrate coordinated motion.

The length of the spline therefore determines the distance

the tool travels, and machining time required. In multi-axis

machining, maintaining a constant feedrate along the posi-

tion spline and a constant angular velocity along the orien-

tation spline would result in uncoordinated motion. This is

because the two splines have different lengths. Merely scal-

ing the length of the orientation or position spline is insuf®-

cient since the spacing between matching points on the two

splines is unlikely to be proportional. Consequently, the

orientation spline must be reparameterized to meet the coor-

dinated motion requirement.1

Coordinated motion is achieved by reparameterizing the

orientation spline with an orientation reparameterization

spline. The reparameterization spline relates the position

spline parameter, u, to the orientation spline parameter, v,

for each segment:

v � Vi�u� �26�

For each segment of the spline coordinated motion is

ensured with

Vi�0� � 0 �27�

Vi�li� � li: �28�
The reparameterization spline is formulated as a C2 mono-

tonic rational quadratic spline based on the work of Fritsch

and Carlson [4], and Delbourgo and Gregory [1,6]. The

spline is interpolated through the knots of the position and

orientation splines and is given as

Vi�u�

� mi11u2 1 lil
21
i �mi11hi 1 mihi11�u�li 2 u�1 mi�li 2 u�2

u2 1 lil
21
i �hi 1 hi11�u�li 2 u�1 �li 2 u�2 2 mi;

i � 1;¼; n; (29)

m1 � 0;

mi �
Xi 2 1

e�1

le i � 2;¼; n 1 1:

The hi are the ®rst derivatives of the spline at the segment

junctions and are unknown. They are solved for in the

following procedure. Let

ai � 1

li

; i � 1;¼; n �30�

bi � li21

l2
i21

1
li

l2i
; i � 2;¼; n �31�

ci � 1

li21

1
1

li
; i � 2;¼; n: �32�

Initialize the hi with

h1 � l1l2�l1 1 l2 1 1�2 l2l1

l1l2�l1 1 l2� �33�

hi � bi

ai21 1 ai

� �1=2

; i � 2;¼; n �34�

hn11 � lnln21�ln 1 ln21 1 1�2 ln21ln
lnln21�ln 1 ln21� : �35�

Using Gauss±Seidel iterate

until

max
i

uh�w11�
i 2 h�w�i u # e: �37�

4. Performance evaluations

A multi-axis tool path based on a fan pro®le [22,23] is

used as an example. The original fan pro®le is scaled by

three, and then offset towards the center of the fan pro®le by

the tool radius, 12.7 mm. The resulting spline is duplicated,

translated in the positive z direction by 25.4 mm, and rotated

by 0.1745 rad (108). These two splines form a ruled surface.
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1 Alternatively the position spline could be reparametrized should a

constant angular velocity be desired.

h�w11�
i � ci 2 ai21h�w11�

i21 2 aih
�w�
i11 1 ��ci 2 ai21h�w11�

i21 2 aih
�w�
i11�2 1 4�ai21 1 ai�bi�1=2

2�ai21 1 ai� ; i � 2;¼; n �36�



The tool path is generated by offsetting points in a direction

normal to the design surface for a distance equal to the tool

radius. Because of symmetry, only one quarter of the fan

pro®le was used. The resulting ruled surface tool path is

shown in Fig. 5. Twenty-®ve points were extracted from

the tool path for the position, orientation, and reparameter-

ization splines as shown in Table 1 and Fig. 7.

The position spline (see Fig. 7) is almost identical to the

spline generated by the algorithm of Wang and Wright

[22] except that there is some displacement in the z

direction. As shown in Fig. 8 the average parameteriza-

tion error (calculated as earlier) has been reduced to

0.013% from 0.038% by the proposed algorithm. The

average parameterization error of the orientation spline

is even less 0.0033%.

The example tool path of Fig. 5 was simulated using a

constant feedrate of 400 mm/min (6.67 mm/s). To evaluate

the tool path at a constant feedrate the feedrate must be

related to u:

u � ft: �38�

The equations for the motion of the tool relative to the part

reference frame at constant feedrate are given by the follow-

ing equations:

t�t� �
Pi� ft�

Qi�Vi� ft��

" #
�39�

d

dt
t�t� �

d

dt
Pi� ft�

d

dVi

Qi�Vi� ft�� d

dt
Vi� ft�

26664
37775 �40�

d2

dt2
t�t� �

d2

dt2
Pi� ft�

d2

dV2
i

Qi�Vi� ft�� d

dt
Vi� ft�

� �2

1
d

dVi

Qi�Vi� ft�� d2

dt2
Vi� ft�

266664
377775:
�41�

The position spline components are shown in Fig. 9 and

orientation spline components are shown in Fig. 10. These

®gures demonstrate that the displacement, and the ®rst and

second derivatives of the two splines are continuous. The

level of continuity is comparable to Ref. [23].

Fig. 11 shows the feedrate and angular velocity for the

example tool path. The feedrate illustrates the approxima-

tion to near constant feedrate within a range of approxi-

mately 1 mm/min or no greater than 0.018% error for the

feedrate of 400 mm/min.

By contrast, the angular velocity is overwhelmed by the

reparameterization and is therefore non-constant. However,

in Fig. 12 the proposed algorithm is compared to the work of

Ge and Srinivasan [5,20] which essentially assumes li � li:

The orientation spline based on this assumption therefore

need only be a cubic spherical spline and consequently is

not near arc-length parameterized. Hence ¯uctuations
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Table 1

Interpolatory data for the example tool path

px (mm) py (mm) pz (mm) qx qy qz

113.560775 7.735266 22.209314 20.107258 0.624902 0.773300

117.864949 210.950074 20.974065 20.003002 0.653008 0.757345

115.502860 234.808781 0.779567 0.135034 0.648777 0.748902

104.086026 255.840098 2.682644 0.263922 0.596758 0.757776

95.225652 263.959571 4.073524 0.317154 0.551822 0.771301

88.820589 265.972318 6.021818 0.329520 0.516103 0.790603

80.162816 265.096397 7.031464 0.326785 0.478040 0.815285

72.478246 261.109537 6.863103 0.313696 0.446069 0.838223

65.985754 254.666365 6.143037 0.288698 0.416448 0.862105

54.251993 239.568096 4.931174 0.217010 0.357492 0.908354

38.038952 223.111532 3.536073 0.129479 0.261821 0.956391

31.679054 218.711329 3.017623 0.105499 0.220895 0.969575

26.192567 216.781277 2.454873 0.096827 0.184942 0.977968

22.337845 216.486398 1.907427 0.097931 0.159739 0.982290

18.769843 217.937940 0.258718 0.110602 0.137889 0.984253

17.004164 221.333422 21.375463 0.133457 0.127499 0.982819

16.763098 227.082862 22.573817 0.171104 0.127727 0.976939

20.059322 238.210737 23.573619 0.238991 0.153346 0.958837

26.991221 267.786318 25.570258 0.399932 0.201303 0.894165

28.080737 286.648047 26.205088 0.487937 0.208205 0.847684

21.813110 2103.571377 24.442501 0.567908 0.182153 0.802683

6.156323 2114.179587 22.044104 0.628723 0.098457 0.771372

212.661488 2117.988771 20.872310 0.654180 20.006643 0.756310

231.816238 2116.324006 0.514512 0.651997 20.117213 0.749107

249.438878 2108.784390 2.089537 0.618930 20.223905 0.752856



between interpolatory points appear in the angular velocity.

If instead a near arc-length parameterized orientation spline

is used along with a reparameterization spline the result is

an improvement in the smoothness of the angular velocity

and on average a reduction in angular acceleration of 11.6%

and a reduction of 39.3% at the peak near 12 s (see Fig. 12).

The reason for the improvement is the reduction of the

¯uctuations between interpolatory points in the speed of

the orientation spline by the application of the near arc-

length parameterization technique.

Below is an example of inverse kinematics that further

demonstrates the effect of the proposed tool path interpola-

tion algorithm on the commanded motion of a multi-axis

machine tool. A typical tilting rotary table type ®ve-axis

CNC machine tool has three linear axes, X, Y, and Z, and

two rotary axes A, and C. For this type of CNC machine tool

the simpli®ed equations for transforming the tool coordi-

nates, t, into joint space is given below [11,16]:

A � 2arccos�qz� �42�
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Fig. 7. Component splines of the example tool path: (a) tool tip position

spline; (b) tool axis orientation spline and (c) orientation reparameterization

spline.
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Fig. 8. Deviation from arc-length parameterization of position and orienta-

tion splines for the example tool path.
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Fig. 9. Position spline components and ®rst and second derivatives for the

example tool path.



C � arctan�qx; qy�1 p �43�

X � qx�py 2 dy�2 qy�px 2 dx����������
1 2 q2

z

q �44�

Y � �1 2 q2
z ��pz 2 dz�2 qz�qx�py 2 dy�1 qy�px 2 dx�����������

1 2 q2
z

q
�45�

Z � �qx�py 2 dy�1 qy�px 2 dx��1 qz�pz 2 dz�: �46�
The vector � dx dy dz � speci®es the coordinates of the

part relative to the tool in the workspace of the machine

tool. For the example tool path, this vector was assigned

the value � 0 0 2140:8174 � mm:

To compute the velocity and acceleration of the indivi-

dual axes the chain rule of calculus is applied. For the axis

the equations are:

dA

dt
� dA

dqz

_qz �47�

d2A

dt2
� d2A

dq2
z

_qz 1
dA

dqz

�qz: �48�

Similar results are obtained for the remaining four axes.

Results are shown in Figs. 13 and 14 for the linear and

rotary axes, respectively. It should be noted that the velocity

and acceleration of the C axis demonstrates a marked spike.

This occurs because the tool orientation nears a kinematic

singularity in this region. These simulations demonstrate C2

continuity for all axes which compares favorably with the

three-axis results of Yang and Wang [25], and Wang and

Wright [22].
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The acceleration of the linear and rotary axes does not

exceed the range ^10 mm/s2 and ^0.2 rad/s2, respectively.

This is a much smaller range than the accelerations of

^30,000 mm/s2 reported by Yang and Wang [25] for linear

interpolators. Fig. 15 shows photographs of the successfully

machined part.

5. Conclusion

This paper introduces the spherical BeÂzier spline for

interpolating the orientation unit vectors of a multi-axis

tool path. This spline is combined with a position spline

and reparameterization spline to produce a tool path inter-

polator. As shown, the proposed interpolator generates a

tool path, which has the property of near constant feed

and reduced angular acceleration. The axis commands are

demonstrated to be C2 continuous and display velocities and

accelerations similar to previously published research on

near arc-length parameterized three-axis interpolators, but

with reduced angular acceleration. Additionally, an

improvement in the unit tangency property of the position

spline is demonstrated in comparison to previous work. By

interpolating the tool path instead of the axes commands, a
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arc-length and a naturally �li � li� parameterized orientation spline (for

clarity only the ®rst 20 s of the example tool path is shown).
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Fig. 13. Commanded motion, velocity, and acceleration, for linear axes for

the example tool path.
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Fig. 15. Photographs of the machined part and 25.4 mm diameter ¯at end-mill cutter.



kinematics independent solution that can be used with ®ve-

axis machine tools, hexapods, and robotic arms, is achieved.
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Appendix A

In computing the cubic and quintic spherical BeÂzier

spline it is necessary to calculate the ®rst and second deri-

vatives at the ends of each segment of the spline. It also

necessary to calculate the control points in the vicinity of the

end points of each segment given the tangent and curvature

at the end points.

For BeÂzier curves the ®rst derivative at v � 0 is affected

by only the ®rst and second control point. Hence, after

differentiating Eq. (19) with respect to v and evaluating

the result at zero (the subscript i has been dropped for

clarity)

d

dv
Q j�0� � q 0 � ju

l sin�u� �d2 2 d1 cos�u��;

u � arccos�d1´d2�
�A1�

Similarly, when the ®rst derivative of the spherical BeÂzier

spline segment is evaluated at l

d

dv
Q j�l� � q 0 � ju

l sin�u� �d j11 cos�u�2 d j�;

u � arccos�d j´d j11�:
�A2�

Eqs. (A1) and (A2) can be inverted to yield

d2 � d1 cos
luq 0u

j

 !
1

q 0

uq 0u
sin

luq 0u
j

 !
�A3�

and

dj � dj11 cos
luq 0u

j

 !
2

q 0

uq 0u
sin

luq 0u
j

 !
; �A4�

respectively.

Given the second derivative and the ®rst two control

points the third control point can be found because the

second derivative at the end v � 0 is only affected by the

®rst three control points as evidenced when Eq. (19) is

differentiated twice and evaluated ®rst at zero

d2

dv2
Q j�0� � q 00

� j

l2

 
u

sin�u�

 
d

dv
Bj21

2 �0�2
d

dv
Bj21

1 �0� cos�u�
!

1
d2

dv2
B1

1�0�

1u 0
 

1

u

d

dv
B1

1�0�2
1

sin�u�
d

dv
B1

1�1�
!!

; u

� arccos�dj´d2�;

u 0 � 2
d1´

d

dv
B

j21
2 �0�1 d2´

d

dv
B

j21
1 �0�

sin�u� (A5)

and then at l

d2

dv2
Q j�l� � q 00

� j

l2

 
u

sin�u�

 
d

dv
B

j21
j11�1� cos�u�2

d

dv
B

j21
1 �1�

!

1
d2

dv2
B1

j11�1�1 u 0
 

1

u

d

dv
B1

j11�1�2
1

sin�u�
d

dv
B1

j �0�
!!

; u

� arccos�dj´dj11�;

u 0 � 2
dj´

d

dv
B

j21
j11�1�1 dj11´

d

dv
B

j21
j �1�

sin�u� : (A6)

Solving for the third control point is achieved in two steps.

Firstly it is recognized that the unknown, d3, appears in Eq.

(A5) only within the righthand side of

q 0 � d

dv
B

j21
2 �0�: �A7�

Consequently, the unknown control is obtained by ®rst

solving for q 0 and then solving for the unknown with

d3 � d2 cos
uq 0u

j 2 1

 !
1

q 0

uq 0u
sin

uq 0u
j 2 1

 !
�A8�

The vector q 0 is obtained by rewriting Eq. (A5) as

q 0 1 �d1´q 0�g 1 h � 0 �A9�

g � 1

u

1

sin�u�
d

dv
B1

1�1�2
1

u

d

dv
B1

1�0�
� �

�A10�
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h � sin�u�
ju

j
d2

dv2
B1

1�0�2 l2q 00
 !

1 g d2´
d

dv
B

j21
1 �0�

� �

2 cos�u� d

dv
B

j21
1 �0�: (A11)

To isolate q 0 note that q 0 and d2 must be orthogonal. Taking

the dot product of d2 and Eq. (A7) eliminates the leftmost q 0:
From the remaining equation d1´q 0 is isolated and substi-

tuted back into Eq. (A7). This results in

q 0 � h´d2

g´d2

� �
g 2 h: �A12�

The result for dj21 is obtained from the second derivative of

the spherical BeÂzier spline evaluated at l

dj21 � dj cos
uq 0u

j 2 1

 !
2

q 0

uq 0u
sin

uq 0u
j 2 1

 !
�A13�

d

dv
B

j21
j �1� � q 0 � h´dj

g´dj

 !
g 2 h �A14�

g � 1

u

1

u

d

dv
B1

j11�1�2
1

sin�u�
d

dv
B1

j �0�
� �

�A15�

h � sin�u�
ju

l2q 00 2 j
d2

dv2
B1

j11�1�
 !

1 g dj´
d

dv
Bj21

j11�1�
� �

2 cos u
d

dv
Bj21

j11�1�: (A16)
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